

УСТРОЙСТВО LORAWAN®

ВЕГА СИ-13

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

РЕВИЗИЯ ДОКУМЕНТАЦИИ	ВЕРСИЯ ПО
14	A.0b3EU

ОГЛАВЛЕНИЕ

ВВЕДЕ	ЕНИЕ	3
1 HA3	НАЧЕНИЕ И ПРИНЦИП РАБОТЫ	4
Наз	начение устройства	1
Алго	оритм работы	4
Фун	ікционал	6
Мар	ркировка	6
2 TEXI	НИЧЕСКИЕ ХАРАКТЕРИСТИКИ	7
Yan	актеристики устройства	7
	тройки по умолчанию	
3 РАБ	ОТА С УСТРОЙСТВОМ	9
Вне	шний вид устройства	9
Опи	терите контактов	10
14	икация устройства	12
Рек	омендации по монтажу	13
Раб	ота модема в прозрачном режиме	15
Раб	ота модема в режиме самостоятельного опроса	15
	РТОКОЛ ОБМЕНА	
	цем Вега СИ-13 передает пакеты следующих типов	
1.		
1. 2.		
3.		
3. 4.		
5.		
	дем Вега СИ-13 принимает пакеты следующих типов	
1. 2.		
3.		
3. 4.		
	ВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ	
	4ПЛЕКТ ПОСТАВКИ	
	АНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА	22

ВВЕДЕНИЕ

Настоящее руководство распространяется на модемы Вега СИ-13-232 и Вега СИ-13-485 (далее — модем) производства ООО «Вега-Абсолют» и определяет порядок установки и подключения, а также содержит команды управления и описание функционала.

Руководство предназначено для специалистов, ознакомленных с правилами выполнения монтажных работ в области различного электронного и электрического оборудования.

ООО «Вега-Абсолют» сохраняет за собой право без предварительного уведомления вносить в настоящее руководство изменения, связанные с улучшением оборудования и программного обеспечения, а также для устранения опечаток и неточностей.

1 НАЗНАЧЕНИЕ И ПРИНЦИП РАБОТЫ

НАЗНАЧЕНИЕ УСТРОЙСТВА

Модем Вега СИ-13 имеет два варианта исполнения, отличающиеся только видом интерфейса обмена данными:

- o Вега СИ-13-232 с интерфейсом RS-232;
- o Вега СИ-13-485 с интерфейсом RS-485.

Вега СИ-13 предназначен для выполнения счета импульсов, приходящих на 2 независимых входа, с последующим накоплением и передачей этой информации в сеть $LoRaWAN^{@}$.

Также устройство Вега СИ-13 может применяться в качестве охранного блока, - все его входы могут быть настроены на использование в качестве охранных.

Модем может быть использован на любых приборах учета коммунальных ресурсов и промышленном оборудовании с интерфейсами RS-232, RS-485, или импульсными выходами, таких как водосчётчики, электросчётчики, теплосчётчики. СИ-13 может работать в режиме прозрачного радиомодема, либо самостоятельно опрашивать приборы учета.

Оборудование с импульсным выходом типа NAMUR не поддерживается

Питание модема осуществляется от внешнего источника питания с напряжением 8...36 В.

АЛГОРИТМ РАБОТЫ

Вега СИ-13 работает в следующих режимах:

«Склад» — это режим, предназначенный для хранения и транспортировки. В данном режиме устройство не осуществляет регулярную передачу данных в сеть.

«Активный» - рабочий режим устройства.

Перед началом использования модем необходимо вывести из режима «Склад».

Устройство Вега СИ-13 поддерживает два способа активации в сети LoRaWAN $^{\circ}$ – ABP и ОТАА. Выбрать один из способов можно с помощью приложения «Vega LoRaWAN Configurator» (см. «Руководство пользователя» на программу).

Способ ABP. После нажатия на кнопку запуска, устройство сразу начинает работать в режиме «Активный».

Способ ОТАА. После нажатия на кнопку запуска, устройство осуществит три попытки присоединения к сети в заданном при настройке частотном диапазоне. При получении подтверждения активации в сети LoRaWAN®, устройство подаст сигнал индикатором (свечение в течение 5 секунд) и перейдет в режим «Активный». Если все попытки окажутся неудачными, счетчик продолжит накопление данных и будет осуществлять попытки присоединения к сети раз в 6 часов.

Перевести устройство из «Активного» режима обратно в режим «Склад» можно при помощи длительного нажатия на кнопку <u>запуска</u> (более 5 секунд).

При переходе в режим «Склад» все показания с импульсных входов, накопленные в памяти устройства, сбрасываются

Устройство формирует пакет с текущим состоянием с настраиваемым периодом от 5 минут до 24 часов. Пакеты сохраняются в память устройства и передаются при очередном сеансе связи с сетью $LoRaWAN^{\otimes}$.

Примеры

Если период сбора данных равен 24 часа, то формирование пакета будет осуществляться в 00.00 по внутренним часам устройства

Если период сбора данных 12 часов, то в 00.00 и в 12.00, и так далее.

Период передачи данных может настраиваться от 5 минут до 24 часов. При выходе на связь устройство начинает отправлять пакеты с показаниями, начиная с самого раннего. Конкретное время передачи данных не может быть задано, оно определяется случайным образом для каждого устройства внутри выбранного периода передачи данных с момента подключения к сети.

Пример

Задан период передачи данных 30 минут, а устройство было запущено в 16:40 по внутренним часам устройства. При случайном подсчете, устройством было назначено время 16:41 для передачи пакета в получасовой период с 16:40 до 17:10. Таким образом, пакеты с данного устройства будут передаваться в 16:41, в 17:11, в 17:41, в 18:11 и так далее каждые 30 минут по внутренним часам устройства.

Время внутренних часов устанавливается автоматически при подключении к устройству через USB, а также может быть скорректировано через сеть LoRaWAN®.

ФУНКЦИОНАЛ

Модем Вега СИ-13 является устройством класса С (по классификации LoRaWAN®) и обеспечивает следующий функционал:

- работа в режиме прозрачного радиомодема LoRaWAN® <-> RS-232 или LoRaWAN® <-> RS-485
- самостоятельный опрос внешнего оборудования настраиваемыми командами
- поддержка ADR (Adaptive Data Rate)
- поддержка отправки пакетов с подтверждением (настраивается)
- возможность переключения входов в режим "охранный" для подключения внешних датчиков протечки, охранных датчиков и т. д.
- выход на связь при срабатывании охранных входов
- измерение температуры

МАРКИРОВКА

Маркировка устройства выполнена в виде наклеиваемой этикетки, которая содержит:

- Наименование изделия;
- OevEUI;
- Месяц и год выпуска изделия.

Этикетка располагается в трех местах - на корпусе устройства, в паспорте и на упаковочной коробке.

Кроме того, на упаковочной коробке располагается дополнительная этикетка, содержащая:

- Информацию о версии встроенного программного обеспечения;
- QR-код, в котором содержатся DevEUI и ключи, необходимые для регистрации устройства в сети методом ОТАА.

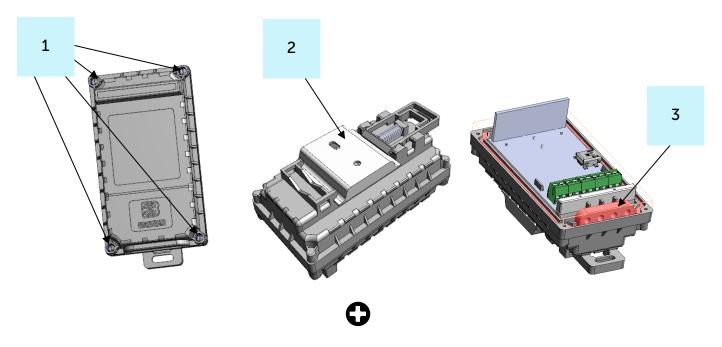
2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

ХАРАКТЕРИСТИКИ УСТРОЙСТВА

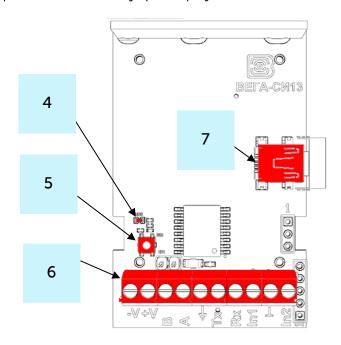
ОСНОВНЫЕ				
Входы импульсные	до 2			
Максимальная частота импульсного сигнала	200 Гц			
Входы охранные	до 2			
Интерфейс	RS-232 или RS-485			
USB-порт	mini-USB, type B			
Диапазон рабочих температур	-40+85 °C			
Встроенный датчик температуры	да			
LORAWA	N®			
Класс устройства LoRaWAN®	С			
Количество каналов LoRa	16			
Частотные планы, поддержанные по умолчанию	RU868, EU868, KZ865, произвольный (на основе EU868)			
Частотные планы, доступные под заказ	IN865, AS923, AU915, KR920, US915			
Способ активации в сети LoRaWAN®	АВР или ОТАА			
Период выхода на связь	5, 15, 30 минут, 1, 6, 12 или 24 часа			
Тип антенны LoRa	внутренняя			
Чувствительность	-138 dBm			
Дальность радиосвязи в плотной застройке	до 5 км			
Дальность радиосвязи в сельской местности	до 15 км			
Мощность передатчика по умолчанию	25 мВт (настраивается)			
Максимальная мощность передатчика	100 мВт			
ПИТАНИ	1E			
Внешнее питание	836 B			
КОРПУ	C			
Размеры корпуса, не более	90 х 49 х 46 мм			
Степень защиты корпуса	IP65			
Крепление	стяжками к опоре, на DIN-рейку, настенное			

НАСТРОЙКИ ПО УМОЛЧАНИЮ

ПАРАМЕТР	ЗНАЧЕНИЕ
Частотный план	RU868
Способ активации в сети	OTAA
Автоматическое управление скоростью	включено
Запрашивать подтверждение	выключено
Задержка открытия первого приемного окна (Rx 1 delay)	1 секунда
Задержка на подтверждение присоединения к сети (Join accept delay)	5 секунд
Количество переповторов отправки	1
Скорость	DR0
Мощность передатчика	14 дБм
Период передачи данных	24 часа
Часовой пояс	UTC +00:00
Входы работают в режиме	импульсный


Для изменения настроек устройства необходимо подключиться к нему с помощью программы «Vega LoRaWAN Configurator». Вы можете скачать её на сайте в разделе «Программное обеспечение», там же находится руководство по работе с конфигуратором. Перейти на страницу программы.

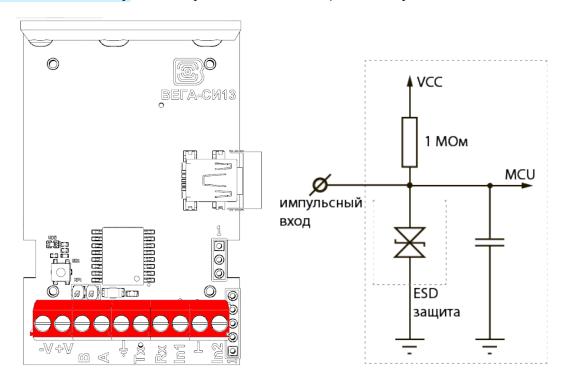
3 РАБОТА С УСТРОЙСТВОМ


ВНЕШНИЙ ВИД УСТРОЙСТВА

Устройство Вега СИ-13 представлено в небольшом пластиковом корпусе, скрученном на шурупы с креплением под DIN-рейку.

- 2 DIN-рейка с монтажными отверстиями ø 3 мм
- 3 силиконовый уплотнитель без сквозных отверстий, обеспечивающий степень защиты корпуса устройства IP65.

Все элементы управления и индикации, а также контакты для подключения расположены внутри корпуса на плате.



- 4 светодиодный индикатор
- 5 кнопка запуска
- 6 контактные клеммы
- 7 USB-порт

ОПИСАНИЕ КОНТАКТОВ

При подключении радиомодема к внешним устройствам следует учитывать внутреннюю схемотехнику его импульсных входов, приведенную ниже.

Модем имеет 10 контактов, подробное описание которых приведено в таблице:

KOHTAKT	ОПИСАНИЕ
-V	Питание -
+V	Питание +
В	RS-485 B
Α	RS-485 A
Tx	RS-232 TX
Rx	RS-232 RX
<u></u> , ⊥	Сигнальная земля
In1, In2	Импульсные входы 1 и 2

RS-232 или RS-485 используется земля $\stackrel{\downarrow}{=}$, для подключения импульсных входов In1 и In2 используется земля \bot .

Счетчик импульсов оснащен <mark>алгоритмом антидребезга</mark> с постоянной времени 5 мс. Подсчет импульсов осуществляется для частот до 200 Гц.

Импульсные входы модема позволяют подключать цепи со следующими типами замыкающих контактов:

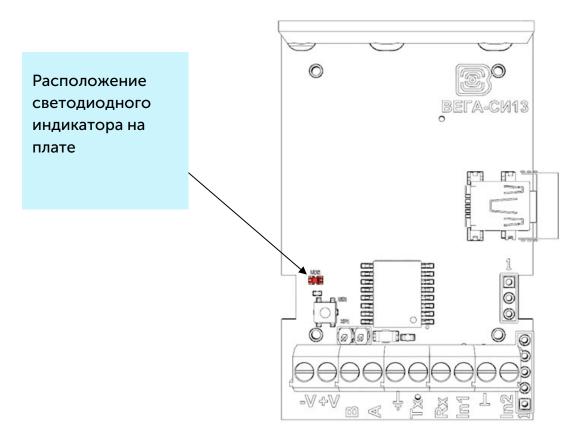
- геркон;
- механическая кнопка;
- «открытый коллектор».

Оборудование с импульсным выходом типа NAMUR не поддерживается

Полярность имеет значение только для цепи с «открытым коллектором».

Чтобы сбросить показания импульсов на входах, необходимо перевести устройство в режим «Склад» длительным (более 5 секунд) нажатием на кнопку на плате.

Импульсные входы могут быть настроены для использования в режиме «Охрана» через приложение «Vega LoRaWAN Configurator». В таком случае устройство не осуществляет подсчет импульсов на «Охранном» входе, а только следит за изменением его состояния. В случае срабатывания «Охранного» входа устройство активируется и отправляет в сеть сообщение с сигналом тревоги.


Максимальная возможная частота генерации тревожных пакетов – раз в 1 секунду.

Ревизия № 14 от 09.08.2021

ИНДИКАЦИЯ УСТРОЙСТВА

Устройство имеет один светодиодный индикатор красного цвета, расположенный на плате. Индикация используется только на этапе активации устройства в сети $LoRaWAN^{\otimes}$.

СИГНАЛ ИНДИКАТОРА		ЗНАЧЕНИЕ	
	Короткие вспышки	Идет процесс присоединения к сети	
	Одна длинная вспышка в течение 5 с	Устройство успешно присоединено к сети и в активном режиме	
	Три вспышки по 1 с	Попытка присоединения окончилась неудачей или переход в режим «Склад»	

В случае неуспешной попытки присоединения к сети устройство продолжит накопление данных и будет осуществлять попытки присоединения к сети раз в 6 часов

РЕКОМЕНДАЦИИ ПО МОНТАЖУ

Для обеспечения устойчивой радиосвязи между базовой станцией и оконечным устройством рекомендуется избегать установки оборудования в места, представляющие собой непреодолимые преграды для прохождения радиосигнала, такие как: армированные перекрытия и стены, подвальные помещения, подземные сооружения и колодцы, стальные короба и т. д.

При разворачивании сети, включающей в себя большое количество оконечных устройств, необходимым этапом является выполнение работ по радиопланированию с проведением натурных экспериментов.

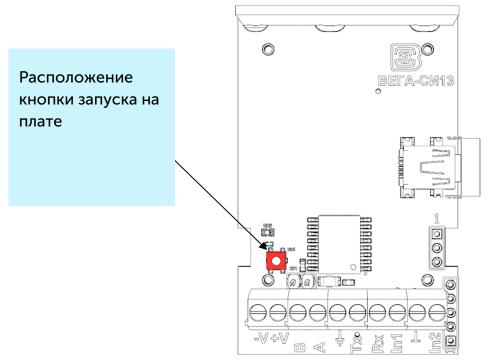
Перед началом монтажных работ необходимо убедиться, что на оборудовании установлена последняя версия прошивки

Для осуществления монтажа понадобится:

- отвертка крестовая •
- шило;
- нож для зачистки провода;
- ноутбук.

Пошаговый монтаж выглядит следующим образом:

- 1. Настройка всех устройств и подключение их в общую сеть (см. Руководство по разворачиванию сети) как правило выполняется в офисе.
- 2. Определение удачных мест для монтажа на объекте с помощью тестера сети.
- 3. Обесточивание подключаемого оборудования, приборов учета и пр.
- 4. Изготовление отверстий в силиконовом уплотнителе под провода строго по количеству проводов. Необходимо помнить, что провод должен быть круглого сечения и не более 3 мм в диаметре.



При удалении уплотнителя, а также при установке проводов другого диаметра или сечения возможно ухудшение характеристик устройства вплоть до выхода из строя вследствие попадания влаги внутрь корпуса

- 5. Подключение всех необходимых проводов в клеммы СИ-13.
- 6. Запуск устройства перевод в режим «Активный» и регистрация в сети.

Ревизия № 14 от 09.08.2021

- 7. С помощью ноутбука убедиться, что устройство успешно передает данные.
- 8. Перед сборкой устройства необходимо сбросить накопленные при тестировании и подключении импульсы путем перевода устройства в режим «Склад» нажатием кнопки в течении 5 сек.
- 9. Включить устройство, нажав кнопку запуска.
- 10. Сборка устройства.
- 11. Монтаж DIN-рейки или другой доступный способ крепления устройства на объекте.

15

РАБОТА МОДЕМА В ПРОЗРАЧНОМ РЕЖИМЕ

Для возможности использования модема совместно с различными программными комплексами диспетчеризации приборов учёта и промышленного оборудования в него добавлена возможность работы в прозрачном режиме. В этом режиме модем работает как простой канал связи между сетью LoRaWAN® и подключенным внешним прибором. СИ-13 может получать из LoRaWAN® сети данные, предназначенные для внешнего устройства, и без какой-либо обработки передавать их в интерфейс RS-232 или RS-485. Если внешнее устройство отвечает на запрос, модем передаёт полученные данные обратно в сеть, также без обработки, в виде одного или нескольких пакетов.

Таким образом, в прозрачном режиме модем не формирует запрос и не обрабатывает ответ от прибора учёта. Обязанность сформировать запросы и анализировать ответы полностью ложится на внешнее приложение, работающее с Вега СИ-13 через сеть LoRaWAN®.

Для обеспечения работы устройства в прозрачном режиме необходимо установить специальное ПО «LoRa2TCP», которое можно скачать на сайте <u>iotvega.com</u>. Там же на странице приложения находится руководство по первичной настройке работы устройства в прозрачном режиме.

РАБОТА МОДЕМА В РЕЖИМЕ САМОСТОЯТЕЛЬНОГО ОПРОСА

Вега СИ-13 может работать в режиме самостоятельного опроса любых подключенных по интерфейсу RS устройств. Для этого в программе «Vega LoRaWAN Configurator» нужно создать и настроить необходимые команды запросов и ожидаемых ответов. После этого модем опрашивает подключенное устройство с заданной периодичностью от 1 до 65535 секунд. При получении определенного ответа модем может отправить пакет в сеть LoRaWAN®.

Поскольку запросы и ответы настраиваются вручную, модем Вега СИ-13 может опрашивать любые подключенные устройства по любому протоколу через интерфейс RS-232 или RS-485.

Ревизия № 14 от 09.08.2021

4 ПРОТОКОЛ ОБМЕНА

В данном разделе описан протокол обмена данными СИ-13 с сетью LoRaWAN®. При приеме и передаче данных СИ-13 использует порт LoRaWAN 2.

В полях, состоящих из нескольких байт, используется порядок следования little-endian

МОДЕМ ВЕГА СИ-13 ПЕРЕДАЕТ ПАКЕТЫ СЛЕДУЮЩИХ ТИПОВ

1. Пакет с текущими показаниями

Передается при каждом выходе на связь с заданным периодом на LoraWAN порт 2

Размер в байтах	Описание поля	Тип данных
1 байт	Тип пакета, 00 – текущий пакет, тревожные пакеты 01-04 по логике RS485/232, FC – по охранному входу 1, FD – по охранному входу 2	uint8
4 байта	Время формирования пакета unixtime	-
1 байт	Температура, °С	int8
4 байта	Показания на входе 1 (в зависимости от типа - число импульсов, либо состояние 0 – разомкнут, 1 - замкнут)	uint32
4 байта	Показания на входе 2 (в зависимости от типа - число импульсов, либо состояние 0 – разомкнут, 1 - замкнут)	uint32
4 байта	Резерв	-

2. Пакет с данными от внешнего устройства, полученными по интерфейсу RS-232 или RS-485

Размер в байтах	Описание поля	Тип данных
1 байт	Тип пакета, для данного пакета = 3	uint8
2 байта	Общий размер полученных через интерфейс данных	uint16
1 байт	Размер данных в текущем пакете	uint8
1 байт	Порядковый номер пакета (в случае передачи нескольких пакетов, когда данные не помещаются в один)	uint8
1 байт	Общее количество пакетов	uint8
массив	Данные [1-40 байт]	-

Технология передачи данных LoRa накладывает ограничения на максимальный размер пакета, в зависимости от скорости, на которой передается данный пакет. В случае если данные, полученные через внешний интерфейс, не могут быть переданы в одном пакете, они разбиваются на несколько пакетов, которые передаются последовательно.

17

3. Пакет с запросом корректировки времени

Передается один раз в 7 дней на LoRaWAN порт 4

Размер в байтах	Описание поля	Тип данных
1 байт	Тип пакета, для данного пакета = 255	uint8
4 байта	Время радиомодема на момент передачи пакета (unixtime UTC)	uint32

После получения пакета данного типа приложение может отправить радиомодему пакет с корректировкой времени.

4. Информационный пакет

Передается при регистрации в сети или по запросу на LoRaWAN порт 195

Размер в байтах	Описание поля	Тип данных
1 байт	Тип пакета: 195	uint8
1 байт	Причина передачи: «0» - при регистрации в сети, «1» - по запросу	uint8
16 байт	Код производителя, в ASCII	uint8
16 байт	Модель устройства, в ASCII	uint8
4 байта	Дата выпуска прошивки, unixtime (порядок байт- big endian)	uint32
2 байта	Версия платы	uint8
2 байта	Версия прошивки (старший байт – major, младший байт - minor). Пример: 0x0301 – версия прошивки 3.1	uint8
2 байта	Версия протокола (старший байт – major, младший байт - minor). Пример: 0x0200 – версия протокола 2.0	uint8
1 байт	Заряд батареи, %	uint8
4 байта	Количество отправленных в эфир пакетов (порядок байт- big endian)	uint32

5. Пакет с настройками

Передается устройством на LoRaWAN порт 3

Размер в байтах	Описание поля	Тип данных
1 байт	Тип пакета, для данного пакета == 0	uint8
2 байт	ID параметра	uint16
1 байт	Длина данных (len)	uint8
len байт	Значение параметра	
2 байт	ID параметра	uint16
1 байт	Длина данных (len)	uint8
len байт	Значение параметра	
2 байт	ID параметра	uint16
1 байт	Длина данных (len)	uint8
len байт	Значение параметра	

МОДЕМ ВЕГА СИ-13 ПРИНИМАЕТ ПАКЕТЫ СЛЕДУЮЩИХ ТИПОВ

1. Пакет с корректировкой времени

Передается приложением на LoRaWAN порт 4

Размер в байтах	Описание поля	Тип данных
1 байт	Тип пакета, для данного пакета = 255	uint8
8 байт	Величина в секундах, на которую нужно скорректировать время. Может быть положительной	int64
	или отрицательной	

2. Запрос информационного пакета

Передается приложением на LoRaWAN порт 195

Размер в байтах	Описание поля	Тип данных
1 байт	Любое значение в пределах 0x00 – 0xFF	uint8

3. Пакет с запросом настроек

Передается приложением на LoRaWAN порт 3

Размер в байтах	Описание поля	Тип данных
1 байт	Тип пакета, для данного пакета == 1	uint8

В ответ на данный пакет устройство пришлет пакет с настройками.

4. Пакет с настройками

Передается приложением на LoRaWAN порт 3, полностью идентичен пакету от устройства

Размер в байтах	Описание поля	Тип данных
1 байт	Тип пакета, для данного пакета == 0	uint8
2 байт	ID параметра	uint16
1 байт	Длина данных (len)	uint8
len байт	Значение параметра	
2 байт	ID параметра	uint16
1 байт	Длина данных (len)	uint8
len байт	Значение параметра	
•••		
2 байт	ID параметра	uint16
1 байт	Длина данных (len) uint8	
len байт	Значение параметра	

Передаваемый на устройство пакет с настройками может содержать не все настройки, поддерживаемые устройством, а только ту их часть, которую необходимо изменить.

Таблица ID настроек СИ-13 и их возможных значений

ID настройки	Описание	Длина данных	Принимаемые значения
4	Запрашивать подтверждение	1 байт	1 – запрашивать 2 – не запрашивать
8	Количество переповторов пакета	1 байт	от 1 до 15
16	Период передачи данных	1 байт	1 – 1 час 2 – 6 часов 3 – 12 часов 4 – 24 часа 5 – 5 минут 6 – 15 минут 7 – 30 минут
20	Скорость интерфейса	1 байт	1 - 4800 2 - 9600 3 - 14400 4 - 19200 5 - 38400 6 - 57600 7 - 115200 8 - 300 9 - 600 10 - 1200 11 - 2400
49	Период сбора данных	1 байт	1 – 1 час 2 – 6 часов 3 – 12 часов 4 – 24 часа 5 – 5 минут 6 – 15 минут 7 – 30 минут
55	Часовой пояс, в минутах	2 байт	от -720 до 840

5 ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ

Модемы Вега СИ-13 должны храниться в заводской упаковке в отапливаемых помещениях при температуре от +5 °C до +40 °C и относительной влажности не более 85%.

Транспортирование модемов допускается в крытых грузовых отсеках всех типов на любые расстояния при температуре от -40 °C до +85 °C.

6 КОМПЛЕКТ ПОСТАВКИ

Модем поставляется в следующих комплектациях:

1. Модем Вега СИ-13-232 – 1 шт.

Винты – 4 шт.

Паспорт – 1 шт.

2. Модем Вега СИ-13-485 – 1 шт.

Винты – 4 шт.

Паспорт – 1 шт.

7 ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

Изготовитель гарантирует соответствие изделия действующей технической документации при соблюдении условий хранения, транспортирования и эксплуатации, указанных в «Руководстве по эксплуатации».

Гарантийный срок эксплуатации – 36 месяцев при наработке, не превышающей 80 000 отправленных изделием пакетов данных.

Гарантийный срок эксплуатации исчисляется со дня отметки о продаже в паспорте изделия, а при отсутствии такой отметки с даты выпуска. В течение гарантийного срока изготовитель обязан предоставить услуги по ремонту или заменить вышедшее из строя устройство или его составные части.

Изготовитель не несёт гарантийных обязательств при выходе изделия из строя, если:

- изделие не имеет паспорта;
- заводской номер (DevEUI, EMEI), нанесённый на изделие, отличается от заводского номера (DevEUI, EMEI), указанного в паспорте;
- изделие подвергалось вмешательствам в конструкцию и/или программное обеспечение, не предусмотренным эксплуатационной документацией;
- изделие имеет механические, электрические и/или иные повреждения и дефекты, возникшие при нарушении условий транспортирования, хранения и эксплуатации;
- изделие имеет следы ремонта вне сервисного центра предприятияизготовителя:
- • компоненты изделия имеют внутренние повреждения, вызванные попаданием внутрь посторонних предметов/жидкостей и/или стихийными бедствиями (наводнение, пожар и т. п.).

Средний срок службы изделия – 7 лет.

При возникновении гарантийного случая следует обратиться в сервисный центр по адресу:

630008, г. Новосибирск, ул. Кирова, 113/1.

Контактный телефон +7 (383) 206-41-35.

e-mail: remont@vega-absolute.ru

ИНФОРМАЦИЯ О ДОКУМЕНТЕ		
Заголовок	Устройство LoRaWAN® Вега СИ-13	
Тип документа	Руководство	
Код документа	В02-СИ13-01	
Номер и дата последней ревизии	14 от 09.08.2021	

История ревизий

Ревизия	Дата	ФИО	Комментарии
01	23.03.2017	KEB	Дата создания документа
02	14.04.2017	KEB	Добавлены фото, мелкие правки
03	10.05.2017	KEB	Новые фото внешнего вида
04	29.05.2017	ПКП	Небольшие изменения протокола обмена
05	21.06.2017	KEB	Изменение в технических характеристиках
06	05.09.2017	КЕВ ПКП	Добавлен раздел «Vega LoRaWAN Configurator», дополнения в протоколе обмена
07	23.10.2017	KEB	Мелкие правки
08	04.05.2018	KEB	Правки касательно области применения на приборах учета с импульсными выходами, мелкие правки, новые иллюстрации в разделе « <u>Pa6ота с устройством</u> »
09	21.12.2018	KEB	Добавлены разделы « <u>Работа модема в прозрачном</u> <u>режиме</u> », « <u>Маркировка</u> », добавлен АррЕиі устройства в <u>тех. характеристики</u>
10	21.05.2019	KEB	Исправление опечатки в <u>протоколе обмена</u> «Расшифровка битового поля» биты 6 и 7
11	14.08.2019	KEB	Опечатка в описании <u>пакета</u> 5.
12	06.07.2020	KEB	Плановый пересмотр документа, мелкие правки
13	23.09.2020	KEB	Изменение <u>логики</u> работы устройства, <u>новый режим</u> опроса внешних устройств, изменения в <u>протоколе</u> обмена
14	09.08.2021	ПАВ	Плановая ревизия документации Изменение условий <u>гарантии</u> , новые разделы

vega-absolute.ru

Руководство по эксплуатации © ООО «Вега-Абсолют» 2017-2021