

СЧЕТЧИК ИМПУЛЬСОВ

ВЕГА СИ-12

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

РЕВИЗИЯ ДОКУМЕНТАЦИИ	ВЕРСИЯ ПО
13	2.1

ОГЛАВЛЕНИЕ

введе	НИЕ	3
1 HA3H	НАЧЕНИЕ И ПРИНЦИП РАБОТЫ	4
Назн	начение устройства	4
	ритм работы	
Функ	кционал	6
•	кировка	
2 TEXH	НИЧЕСКИЕ ХАРАКТЕРИСТИКИ	7
Xapa	актеристики устройства	7
Наст	гройки по умолчанию	8
3 РАБС	ОТА С УСТРОЙСТВОМ	9
Внец	иний вид устройства	9
Опис	сание контактов	10
Инди	икация устройства	12
Реко	рмендации по монтажу	13
	ТОКОЛ ОБМЕНА	
Счет	гчик импульсов Вега СИ-12 передает пакеты следующих типов	15
1.	Пакет с текущими показаниями	
2.	Пакет «тревога»	
3.	Пакет с информацией о внешнем питании	
4.	Пакет с информацией об изменении состояния выхода	17
5.	Пакет с запросом корректировки времени	17
6.	Пакет с настройками	17
Счет	гчик импульсов Вега СИ-12 принимает пакеты следующих типов	18
1.	Пакет с корректировкой времени	18
2.	Команда включения выхода	18
3.	Команда выключения выхода	18
4.	Пакет с запросом настроек	
5.	Пакет с настройками	
	пакет с настроикамиВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ	
	ПЛЕКТ ПОСТАВКИ	
	.НТИЙНЫЕ ОБЯЗАТЕЛЬСТВА	

ВВЕДЕНИЕ

Настоящее руководство распространяется на счетчик импульсов Вега СИ-12 (далее – счетчик) производства ООО «Вега-Абсолют» и определяет порядок установки и подключения, а также содержит команды управления и описание функционала.

Руководство предназначено для специалистов, ознакомленных с правилами выполнения монтажных работ в области различного электронного и электрического оборудования.

ООО «Вега-Абсолют» сохраняет за собой право без предварительного уведомления вносить в руководство изменения, связанные с улучшением оборудования и программного обеспечения, а также для устранения опечаток и неточностей.

1 НАЗНАЧЕНИЕ И ПРИНЦИП РАБОТЫ

НАЗНАЧЕНИЕ УСТРОЙСТВА

Счетчик импульсов Вега СИ-12 предназначен для выполнения счета импульсов, приходящих на 4 независимых входа, с последующим накоплением и передачей этой информации в сеть LoRaWAN.

Также устройство Вега СИ-12 может применяться в качестве охранного блока, - все его входы могут быть настроены на использование в качестве охранных.

Счетчик имеет два дискретных выхода типа открытый коллектор и может использоваться в качестве устройства управления.

Счетчик импульсов может быть использован на приборах учета коммунальных ресурсов и промышленном оборудовании с импульсным выходом типа геркон (сухой контакт) или открытый коллектор.

Оборудование с импульсным выходом типа NAMUR не поддерживается

Счетчик импульсов оснащен алгоритмом антидребезга с постоянной времени 5 мс. Подсчет импульсов осуществляется для частот до 200 Гц.

Элементом питания для счетчика служит батарея SAFT модель LS 17 500 емкостью 3600 мАч. Также счетчик может работать от внешнего источника питания с напряжением 5 В.

Устройство питается от неперезаряжаемой литий-тионилхлоридной (LiSOCl $_2$) батареи

Попытки зарядить батарею могут привести к возгоранию

АЛГОРИТМ РАБОТЫ

Вега СИ-12 работает в следующих режимах:

«Склад» — это режим, предназначенный для хранения и транспортировки. В данном режиме устройство не осуществляет регулярную передачу данных в сеть.

«Активный» - рабочий режим устройства.

Перед началом использования счетчик необходимо вывести из режима «Склад».

Устройство Вега СИ-12 поддерживает два способа активации в сети LoRaWAN® – ABP и ОТАА.

Способ ABP. После нажатия на кнопку запуска, устройство сразу начинает работать в режиме «Активный».

Способ ОТАА. После нажатия на кнопку запуска, устройство осуществит три попытки присоединения к сети в заданном при настройке частотном диапазоне. При получении подтверждения активации в сети LoRaWAN®, устройство подаст сигнал индикатором (свечение в течение 5 секунд) и перейдет в режим «Активный». Если все попытки окажутся неудачными, счетчик продолжит накопление данных и будет осуществлять попытки присоединения к сети раз в 6 часов.

Перевести устройство из «Активного» режима обратно в режим «Склад» можно при помощи длительного нажатия на кнопку запуска (более 5 секунд).

При переходе в режим «Склад» все показания с импульсных входов, накопленные в памяти устройства, сбрасываются

Устройство формирует пакет с текущим состоянием с настраиваемым периодом от 5 минут до 24 часов. Пакеты сохраняются в память устройства и передаются при очередном сеансе связи с сетью LoRaWAN®.

Примеры

Если период сбора данных равен 24 часа, то формирование пакета будет осуществляться в 00.00 по внутренним часам устройства

Если период сбора данных 12 часов, то в 00.00 и в 12.00, и так далее.

Период передачи данных может настраиваться от 5 минут до 24 часов. При выходе на связь устройство начинает отправлять пакеты с показаниями, начиная с самого раннего. Конкретное время передачи данных не может быть задано, оно определяется случайным образом для каждого устройства внутри выбранного периода передачи данных с момента подключения к сети.

Пример

Задан период передачи данных 30 минут, а устройство было запущено в 16:40 по внутренним часам устройства. При случайном подсчете, устройством было назначено время 16:41 для передачи пакета в получасовой период с 16:40 до 17:10. Таким образом, пакеты с данного устройства будут передаваться в 16:41, в 17:11, в 17:41, в 18:11 и так далее каждые 30 минут по внутренним часам устройства.

Время внутренних часов устанавливается автоматически при подключении к устройству через USB, а также может быть скорректировано через сеть LoRaWAN®.

ФУНКЦИОНАЛ

Счетчик импульсов Вега СИ-12 может быть устройством класса A или класса С (по классификации LoRaWAN) и обеспечивает следующий функционал:

- автоматическая смена класса с А на С при подключении внешнего питания
- поддержка ADR (Adaptive Data Rate)
- поддержка отправки пакетов с подтверждением (настраивается)
- снятие показаний с 4х независимых входов одновременно
- возможность работать с двумя выходами типа «открытый коллектор»
- два режима работы «Активный» и «Склад»
- ® возможность переключения входов в режим "охранный" для подключения внешних датчиков протечки, охранных датчиков и т. д.
 - очередь отправки пакетов при невозможности доставки
 - привязка показаний к внутреннему времени устройства
 - внеочередной выход на связь при срабатывании охранных входов
 - измерение температуры
 - измерение заряда встроенной батареи в %

МАРКИРОВКА

Маркировка устройства выполнена в виде наклеиваемой этикетки, которая содержит:

- Наименование изделия;
- O DevEUI:
- Месяц и год выпуска изделия;

Этикетка располагается в трех местах - на корпусе устройства, в паспорте и на упаковочной коробке.

Кроме того, на упаковочной коробке располагается дополнительная этикетка, содержащая:

- Информацию о версии встроенного программного обеспечения;

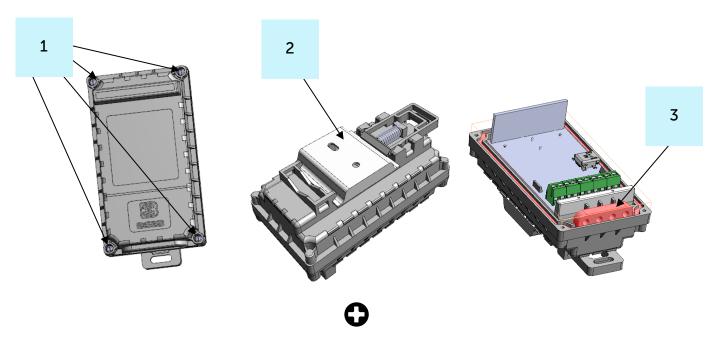
2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

ХАРАКТЕРИСТИКИ УСТРОЙСТВА

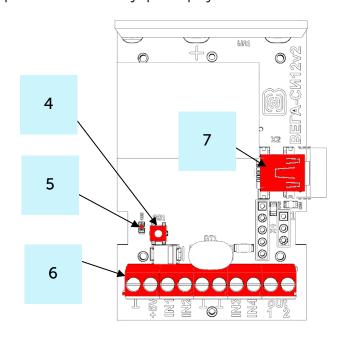
ОСНОВЬ	ОСНОВНЫЕ			
Входы импульсные	до 4			
Максимальная частота импульсного сигнала	200 Гц			
Входы охранные	до 4			
Выходы типа «открытый коллектор»	2			
USB-порт	mini-USB, type B			
Диапазон рабочих температур	-40+85 °C			
Встроенный датчик температуры	да			
LORAWA	AN®			
Класс устройства LoRaWAN®	А или С в зависимости от наличия внешнего напряжения питания			
Количество каналов LoRa	16			
Частотные планы, поддерживаемые по умолчанию	RU868, EU868, KZ865, произвольный (на основе EU868)			
Частотные планы, доступные под заказ	IN865, AS923, AU915, KR920, US915			
Способ активации в сети LoRaWAN®	АВР или ОТАА			
Период выхода на связь	5, 15, 30 минут, 1, 6, 12 или 24 часа			
Период накопления данных	5, 15, 30 минут, 1, 6, 12 или 24 часа			
Объем памяти для накопления пакетов	200 пакетов			
Тип антенны LoRa	внутренняя			
Чувствительность	-138 dBm			
Дальность радиосвязи в плотной застройке	до 5 км			
Дальность радиосвязи в сельской местности	до 15 км			
Мощность передатчика по умолчанию	25 мВт (настраивается)			
Максимальная мощность передатчика	100 мВт			
ПАТИП	ИЕ			
Напряжение внешнего питания	5 B			
Батарея	SAFT LS 17500 3600 MA4			
Расчетное количество отправленных устройством пакетов при настройках по умолчанию	80 000			
КОРПУ	/C			
Размеры корпуса, не более	90 х 49 х 46 мм			
Степень защиты корпуса	IP65			
Крепление	стяжками к опоре, на DIN-рейку, настенное			

НАСТРОЙКИ ПО УМОЛЧАНИЮ

ПАРАМЕТР	ЗНАЧЕНИЕ
Частотный план	RU868
Способ активации в сети	OTAA
Автоматическое управление скоростью	включено
Запрашивать подтверждение	выключено
Задержка открытия первого приемного окна (Rx 1 delay)	1 секунда
Задержка на подтверждение присоединения к сети (Join accept delay)	5 секунд
Количество переповторов отправки	1
Скорость	DR0
Мощность передатчика	14 дБм
Период передачи данных	24 часа
Период сбора данных	24 часа
Часовой пояс	UTC +00:00
Входы работают в режиме	импульсный


Для изменения настроек устройства необходимо подключиться к нему с помощью программы «Vega LoRaWAN Configurator». Вы можете скачать её на сайте в разделе «Программное обеспечение», там же находится руководство по работе с конфигуратором. Перейти на страницу программы.

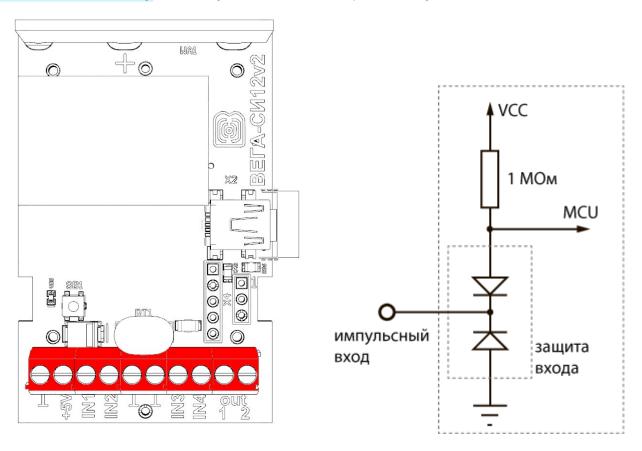
3 РАБОТА С УСТРОЙСТВОМ


ВНЕШНИЙ ВИД УСТРОЙСТВА

Устройство Вега СИ-12 представлено в небольшом пластиковом корпусе, скрученном на шурупы с креплением под DIN-рейку.

- 2 DIN-рейка с монтажными отверстиями Ø 3 мм
- 3 силиконовый уплотнитель без сквозных отверстий, обеспечивающий степень защиты корпуса устройства IP65.

Все элементы управления и индикации, а также контакты для подключения расположены внутри корпуса на плате.



- 4 кнопка запуска
- 5 светодиодный индикатор
- 6 контактные клеммы
- 7 USB-порт

ОПИСАНИЕ КОНТАКТОВ

При подключении радиомодема к внешним устройствам следует учитывать внутреннюю схемотехнику его импульсных входов, приведенную ниже.

KOHTAKT	ОПИСАНИЕ
T	Питание -
+5V	Питание +
IN1, IN2, IN3, IN4	Импульсные входы
1,1	Сигнальная земля
out 1 out 2	Выходы типа «открытый коллектор» 1 и 2

Для подключения импульсных входов IN1, IN2, IN3, IN4 используются сигнальные нулевые контакты (\bot , \bot).

Счетчик импульсов оснащен алгоритмом антидребезга с постоянной времени 5 мс. Подсчет импульсов осуществляется для частот до 200 Гц.

11

Импульсные входы счетчика позволяют подключать цепи со следующими типами замыкающих контактов:

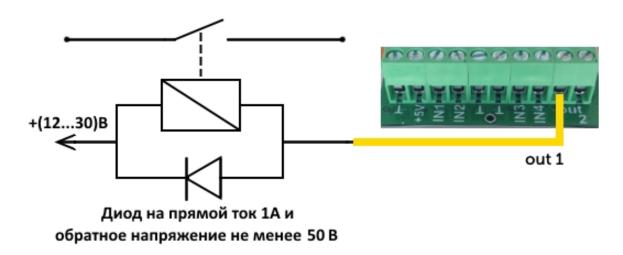
- геркон;
- механическая кнопка;
- «открытый коллектор».

Оборудование с импульсным выходом типа NAMUR не поддерживается

Полярность имеет значение только для цепи с «открытым коллектором».

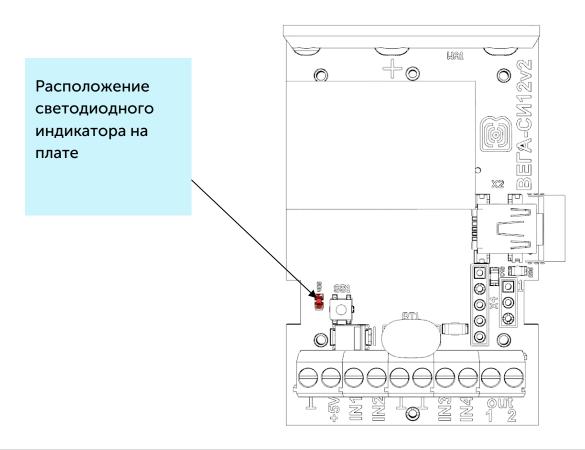
Чтобы сбросить показания импульсов на входах, необходимо перевести устройство в режим «Склад» длительным (более 5 секунд) нажатием на кнопку на плате.

Импульсные входы могут быть настроены для использования в режиме «Охрана» через приложение «Vega LoRaWAN Configurator». В таком случае устройство не осуществляет подсчет импульсов на «Охранном» входе, а только следит за изменением его состояния. В случае срабатывания «Охранного» входа устройство активируется и отправляет в сеть сообщение с сигналом тревоги.


Максимальная возможная частота генерации тревожных пакетов – раз в 1 секунду.

Исполнительные устройства подключаются к счётчику через выходы 9 и 10, которые имеют тип «Открытый коллектор».

Допустимая нагрузка на каждый цифровой выход 0,2 А


Для увеличения нагрузки на выходы устройства, необходимо использовать внешнее реле. Схема подключения реле приведена ниже.

ИНДИКАЦИЯ УСТРОЙСТВА

Устройство имеет один светодиодный индикатор красного цвета, расположенный на плате рядом с кнопкой запуска. Индикация используется только на этапе активации устройства в сети LoRaWAN и при смене режимов работы.

СИГНАЛ ИНДИКАТОРА		ЗНАЧЕНИЕ	
	Короткие вспышки	Идет процесс присоединения к сети	
	Одна длинная вспышка в течение 5 с	Устройство успешно присоединено к сети и в активном режиме	
	Три вспышки по 1 с	Попытка присоединения окончилась неудачей или переход в режим «Склад»	

В случае неуспешной попытки присоединения к сети устройство продолжит накопление данных и будет осуществлять попытки присоединения к сети раз в 6 часов

РЕКОМЕНДАЦИИ ПО МОНТАЖУ

Для обеспечения устойчивой радиосвязи между базовой станцией и оконечным устройством рекомендуется избегать установки оборудования в места, представляющие собой непреодолимые преграды для прохождения радиосигнала, такие как: армированные перекрытия и стены, подвальные помещения, подземные сооружения и колодцы, стальные короба и т. д.

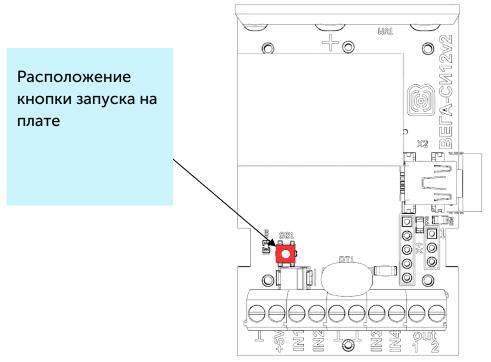
При разворачивании сети, включающей в себя большое количество оконечных устройств, необходимым этапом является выполнение работ по радиопланированию с проведением натурных экспериментов.

Перед началом монтажных работ необходимо убедиться, что на оборудовании установлена последняя версия прошивки

Для осуществления монтажа понадобится:

- отвертка крестовая •;
- шило;
- о нож для зачистки провода;
- ноутбук.

Пошаговый монтаж выглядит следующим образом:


- 1. Настройка всех устройств и подключение их в общую сеть (см. Руководство по разворачиванию сети) как правило выполняется в офисе.
- 2. Определение удачных мест для монтажа на объекте с помощью тестера сети.
- 3. Обесточивание подключаемого оборудования, приборов учета и пр.
- 4. Изготовление отверстий в силиконовом уплотнителе под провода строго по количеству проводов. Необходимо помнить, что провод должен быть круглого сечения и не более 3 мм в диаметре.

При удалении уплотнителя, а также при установке проводов другого диаметра или сечения возможно ухудшение характеристик устройства вплоть до выхода из строя вследствие попадания влаги внутрь корпуса

- 5. Подключение всех необходимых проводов в клеммы СИ-12.
- 6. Запуск устройства перевод в режим «Активный» и регистрация в сети.

- 7. С помощью ноутбука убедиться, что устройство успешно передает данные.
- 8. Перед сборкой устройства необходимо сбросить накопленные при тестировании и подключении импульсы путем перевода устройства в режим «Склад» нажатием кнопки в течении 5 сек.
- 9. Включить устройство, нажав кнопку запуска.
- 10. Сборка устройства.
- 11. Монтаж DIN-рейки или другой доступный способ крепления устройства на объекте.

15

4 ПРОТОКОЛ ОБМЕНА

В данном разделе описан протокол обмена данными СИ-12 с сетью LoRaWAN.

В полях, состоящих из нескольких байт, используется порядок следования little-endian

СЧЕТЧИК ИМПУЛЬСОВ ВЕГА СИ-12 ПЕРЕДАЕТ ПАКЕТЫ СЛЕДУЮЩИХ ТИПОВ

1. Пакет с текущими показаниями

Передается регулярно на LoRaWAN порт 2

Размер в байтах	Описание поля	Тип данных
1 байт	Тип пакета, для данного пакета == 1	uint8
1 байт	Заряд батареи, %	uint8
1 байт	Значения основных настроек (битовое поле)	uint8
4 байта	Время снятия показаний, передаваемых в данном пакете (unixtime UTC)	uint32
1 байт	Температура, °С	int8
4 байта	Показания на входе 1 (в зависимости от типа - число импульсов, либо состояние 0 — разомкнут, 1 - замкнут)	uint32
4 байта	Показания на входе 2 (в зависимости от типа - число импульсов, либо состояние 0 — разомкнут, 1 - замкнут)	uint32
4 байта	Показания на входе 3 (в зависимости от типа - число импульсов, либо состояние 0 — разомкнут, 1 - замкнут)	uint32
4 байта	Показания на входе 4 (в зависимости от типа - число импульсов, либо состояние 0 – разомкнут, 1 – замкнут)	uint32

Счетчик содержит в себе встроенные часы с календарем, время и дата на которых задается при производстве, а также могут быть скорректированы в процессе эксплуатации. Формирование пакетов с текущими показаниями происходит в моменты времени, кратные заданному в настройках периоду сбора данных:

- Для интервала 1 час: передаются показания на начало текущего часа;
- Для интервала 6 часов: передаются показания на 00:00, 06:00, 12:00, 18:00;
- Для интервала 12 часов: передаются показания на 00:00, 12:00;
- Для интервала 24 часа: передаются показания на 00:00 текущих суток.

Расшифровка битового поля «Значения основных настроек»

Бит	Описание поля
0 бит	Тип активации 0 - ОТАА, 1 – АВР
1, 2, 3 биты	Период выхода на связь: 1 == 0 2==0 3==0 - 5 минут 1 == 1 2==0 3==0 - 15 минут 1 == 0 2==1 3==0 - 30 минут 1 == 1 2==1 3==0 - 1 час 1 == 0 2==0 3==1 - 6 часов 1 == 1 2==0 3==1 - 12 часов 1 == 0 2==1 3==1 - 24 часа
4 бит	Тип первого входа: 0 – импульсный, 1 - охранный
5 бит	Тип второго входа: 0 – импульсный, 1 - охранный
6 бит	Тип третьего входа: 0 – импульсный, 1 - охранный
7 бит	Тип четвертого входа: 0 – импульсный, 1 - охранный

2. Пакет «тревога»

Передается при замыкании охранного входа на LoRaWAN порт 2

Размер в байтах	Описание поля	Тип данных
1 байт	Тип пакета, для данного пакета == 2	uint8
1 байт	Заряд батареи, %	uint8
1 байт	Значения основных настроек (битовое поле)	uint8
1 байт	Номер входа, на котором зафиксирована тревога (14)	uint8
4 байта	Время формирования пакета (unixtime UTC)	uint32
4 байта	Показания на входе 1 (в зависимости от типа - число импульсов, либо состояние 0 – разомкнут, 1 - замкнут)	uint32
4 байта	Показания на входе 2 (в зависимости от типа - число импульсов, либо состояние 0 – разомкнут, 1 - замкнут)	uint32
4 байта	Показания на входе 3 (в зависимости от типа - число импульсов, либо состояние 0 — разомкнут, 1 - замкнут)	uint32
4 байта	Показания на входе 4 (в зависимости от типа - число импульсов, либо состояние 0 – разомкнут, 1 - замкнут)	uint32

При передаче данного пакета в полях с показаниями на входах передается текущее число импульсов, снятое на момент выхода устройства на связь.

3. Пакет с информацией о внешнем питании Передается при подключении и отключении внешнего питания на LoRaWAN порт 2

Размер в байтах	Описание поля	Тип данных
1 байт	Тип пакета, для данного пакета == 4	uint8
1 байт	Заряд батареи, %	uint8
1 байт	Значения основных настроек (битовое поле)	uint8
1 байт	Состояние питания (0 – отключено, 1 - подключено)	uint8
4 байта	Время генерации пакета (unixtime UTC)	uint32

17

4. Пакет с информацией об изменении состояния выхода

Передается всякий раз при включении каждого из выходов на LoRaWAN порт 2

Размер в байтах	Описание поля	Тип данных
1 байт	Тип пакета, для данного пакета == 5	uint8
1 байт	Заряд батареи, %	uint8
1 байт	Значения основных настроек (битовое поле)	uint8
1 байт	Номер выхода (1-2)	uint8
1 байт	Состояние выхода (0 – разомкнут, 1 - замкнут)	uint8
4 байта	Время генерации пакета (unixtime UTC)	uint32

5. Пакет с запросом корректировки времени

Передается один раз в 7 дней на LoRaWAN порт 4

Размер в байтах	Описание поля	Тип данных
1 байт	Тип пакета, для данного пакета = 255	uint8
4 байта	Время радиомодема на момент передачи пакета (unixtime UTC)	uint32

После получения пакета данного типа приложение может отправить радиомодему пакет с корректировкой времени

6. Пакет с настройками

Передается устройством на LoRaWAN порт 3 при получении команды запроса настроек, а также после присоединения к сети

Размер в байтах	Описание поля Тип					
1 байт	Тип пакета, для данного пакета == 0					
2 байт	ID параметра uint16					
1 байт	Длина данных (len)	uint8				
len байт	Значение параметра					
2 байт	ID параметра uint16					
1 байт	Длина данных (len) uint8					
len байт	Значение параметра					
2 байт	ID параметра uint16					
1 байт	Длина данных (len) uint8					
len байт	Значение параметра					

СЧЕТЧИК ИМПУЛЬСОВ ВЕГА СИ-12 ПРИНИМАЕТ ПАКЕТЫ СЛЕДУЮЩИХ ТИПОВ

1. Пакет с корректировкой времени

Передается приложением на LoRaWAN порт 4

Размер в байтах	Описание поля	Тип данных
1 байт	Тип пакета, для данного пакета == 255	uint8
8 байт	Величина в секундах, на которую нужно скорректировать время. Может быть положительной или отрицательной	int64

При получении пакета счетчик импульсов установит свои внутренние часы и календарь в соответствии с данными из пакета.

2. Команда включения выхода

Передается приложением на LoRaWAN порт 2

Размер в байтах	Описание поля	Тип данных
1 байт	Тип пакета, для данного пакета == 3	uint8
1 байт	Номер выхода (1 - 2)	uint8
1 байт	Время в секундах (1 - 255), на которое нужно замкнуть выход (0 – замкнуть навсегда)	uint8

3. Команда выключения выхода

Передается приложением на LoRaWAN порт 2

Размер в байтах	Описание поля	Тип данных
1 байт	Тип пакета, для данного пакета == 4	uint8
1 байт	Номер выхода (1 - 2)	uint8

4. Пакет с запросом настроек

Передается приложением на LoRaWAN порт 3

Размер в байтах	Описание поля	Тип данных
1 байт	Тип пакета, для данного пакета == 1	uint8

В ответ на данный пакет устройство пришлет пакет с настройками

5. Пакет с настройками

Передается приложением на LoRaWAN порт 3, полностью идентичен пакету от устройства

Размер в байтах	Описание поля Тип дани					
1 байт	Тип пакета, для данного пакета == 0 uint8					
2 байт	ID параметра uint16					
1 байт	Длина данных (len) uint8					
len байт	Значение параметра					
2 байт	ID параметра uint16					
1 байт	Длина данных (len) uint8					
len байт	Значение параметра					
2 байт	ID параметра uint16					
1 байт	Длина данных (len) uint8					
len байт	Значение параметра					

Передаваемый на устройство пакет с настройками может содержать не все настройки, поддерживаемые устройством, а только ту их часть, которую необходимо изменить.

Таблица ID настроек СИ-12 и их возможных значений

ID настройки	Описание	Длина данных	Принимаемые значения
4	Запрашивать подтверждение	1 байт	1 – запрашивать 2 – не запрашивать
8	Количество переповторов пакета	1 байт	от 1 до 15
12	Режим входа 1	1 байт	1 — импульсный 2 - охранный
13	Режим входа 2	1 байт	1 — импульсный 2 - охранный
14	Режим входа 3	1 байт	1 — импульсный 2 - охранный
15	Режим входа 4	1 байт	1 – импульсный 2 - охранный
16	Период передачи данных	1 байт	1 – 1 час 2 – 6 часов 3 – 12 часов 4 – 24 часа 5 – 5 минут 6 – 15 минут 7 – 30 минут
49	Период сбора данных	1 байт	1 – 1 час 2 – 6 часов 3 – 12 часов 4 – 24 часа 5 – 5 минут 6 – 15 минут 7 – 30 минут
55	Часовой пояс, в минутах	2 байт	от -720 до 840

5 ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ

Счётчики импульсов Вега СИ-12 должны храниться в заводской упаковке в отапливаемых помещениях при температуре от +5 °C до +40 °C и относительной влажности не более 85%.

Транспортирование счетчиков импульсов допускается в крытых грузовых отсеках всех типов на любые расстояния при температуре от -40 °C до +85 °C.

6 КОМПЛЕКТ ПОСТАВКИ

Счетчик импульсов поставляется в следующей комплектации:

Счетчик импульсов Вега СИ-12 – 1 шт.

Винты – 4 шт.

Паспорт – 1 шт.

7 ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

Изготовитель гарантирует соответствие изделия действующей технической документации при соблюдении условий хранения, транспортирования и эксплуатации, указанных в «Руководстве по эксплуатации».

Гарантийный срок эксплуатации – 36 месяцев при наработке, не превышающей 25 000 отправленных изделием пакетов данных.

Гарантийный срок эксплуатации исчисляется со дня отметки о продаже в паспорте изделия, а при отсутствии такой отметки с даты выпуска. В течение гарантийного срока изготовитель обязан предоставить услуги по ремонту или заменить вышедшее из строя устройство или его составные части.

Изготовитель не несёт гарантийных обязательств при выходе изделия из строя, если:

- изделие не имеет паспорта;
- • в паспорте не проставлен штамп ОТК и/или отсутствует наклейка с информацией об устройстве;
- • заводской номер (DevEUI, EMEI), нанесённый на изделие, отличается от заводского номера (DevEUI, EMEI), указанного в паспорте;
- изделие подвергалось вмешательствам в конструкцию и/или программное обеспечение, не предусмотренным эксплуатационной документацией;
- изделие имеет механические, электрические и/или иные повреждения и дефекты, возникшие при нарушении условий транспортирования, хранения и эксплуатации;
- изделие имеет следы ремонта вне сервисного центра предприятияизготовителя;

Средний срок службы изделия – 7 лет.

При возникновении гарантийного случая следует обратиться в сервисный центр по адресу:

630008, г. Новосибирск, ул. Кирова, 113/1

Контактный телефон: +7 (383) 206-41-35

e-mail: remont@vega-absolute.ru

ИНФОРМАЦИЯ О ДОКУМЕНТЕ		
Заголовок	Счетчик импульсов Вега СИ-12	
Тип документа	Руководство	
Код документа	В02-СИ12-01	
Номер и дата последней ревизии	13 от 04.08.2021	

История ревизий

Ревизия	Дата	ФИО	Комментарии
01	20.03.2017	KEB	Дата создания документа
02	14.04.2017	KEB	Добавлены фото, мелкие правки
03	10.05.2017	KEB	Новые фото внешнего вида
04	17.06.2017	ПКП	Изменения в протоколе обмена
05	11.07.2017	ПКП	Исправлена ошибка в описании протокола обмена
06	16.08.2017	ПКП	Уточнения в описании пакета «тревога»
07	07.09.2017	KEB	Добавлен раздел «Vega LoRaWAN Configurator»
80	18.10.2017	KEB	Изменения в условиях гарантии, мелкие правки
09	04.05.2018	KEB	Правки касательно области применения на приборах учета с импульсными выходами, мелкие правки, новые иллюстрации в разделе «Работа с устройством»
10	22.01.2019	KEB	Добавлена процедура сброса показаний нажатием на кнопку, схема защиты импульсного входа, изменения протокола обмена, описание настройки по воздуху. Добавлены частотные планы, изменения в технических характеристиках, описание черного ящика, изменения в условиях гарантии, обновлен конфигуратор. Добавлен раздел «Маркировка».
11	24.01.2019	KEB	Исправлена неточность в <u>протоколе обмена</u> – тип пакета с запросом настроек и с настройками
12	03.07.2020	KEB	Плановый пересмотр документа, мелкие правки
13	04.08.2021	ПАВ	Плановая ревизия документации Изменение условий гарантии, новые разделы

vega-absolute.ru

Руководство по эксплуатации © ООО «Вега-Абсолют» 2017-2021