

NB-IOT МОДЕМ С ИНТЕРФЕЙСОМ 4-20 МА

BEFA NB-12

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

РЕВИЗИЯ ДОКУМЕНТАЦИИ	ВЕРСИЯ ПО
5	1.2b

ОГЛАВЛЕНИЕ

введение	3
1 НАЗНАЧЕНИЕ И ПРИНЦИП РАБОТЫ	4
Назначение устройства	4
Алгоритм сбора и передачи данных	4
Функционал	4
Маркировка	5
2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	6
Характеристики устройства	6
Настройки по умолчанию	7
3 РАБОТА С УСТРОЙСТВОМ	8
Внешний вид устройства	8
Описание контактов	10
Настройка импульсных входов	11
Датчик Холла	13
Кнопки	14
Индикация устройства	15
Рекомендации по монтажу	16
4 ПРОТОКОЛ ОБМЕНА	18
5 ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ	22
6 КОМПЛЕКТ ПОСТАВКИ	23
7 ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА	24

введение

Настоящее руководство распространяется на NB-IoT модем с интерфейсом 4-20 мА Вега NB-12 (далее – модем) производства ООО «Вега-Абсолют» и определяет порядок установки и подключения, а также содержит команды управления и описание функционала.

Руководство предназначено для специалистов, ознакомленных с правилами выполнения монтажных работ в области различного электронного и электрического оборудования.

ООО «Вега-Абсолют» сохраняет за собой право без предварительного уведомления вносить в руководство изменения, связанные с улучшением оборудования и программного обеспечения, а также для устранения опечаток и неточностей.

1 НАЗНАЧЕНИЕ И ПРИНЦИП РАБОТЫ

НАЗНАЧЕНИЕ УСТРОЙСТВА

Модем Вега NB-12 предназначен для считывания показаний с устройств, имеющих интерфейс «токовая петля» 4-20 мА, аналоговый выход, импульсный выход, или цифровой интерфейс 1-Wire, с последующим накоплением и передачей этой информации в сеть NB-IoT.

Также устройство Вега NB-12 может применяться в качестве охранного блока, - два дополнительных входа работают в режиме охранных, также есть датчик Холла.

Модем может быть использован для снятия показаний с любых датчиков и промышленного оборудования с интерфейсом 4-20 мА или 1-Wire, таких как температурные датчики, датчики влажности, датчики давления.

Оборудование с импульсным выходом типа NAMUR не поддерживается

Элементом питания для модема может служить одна или две встроенные батареи ёмкостью 6400 мАч.

АЛГОРИТМ СБОРА И ПЕРЕДАЧИ ДАННЫХ

Показания считываются с прибора учета с настраиваемым периодом 5, 15, 30 минут, 1, 2, 3, 4, 6, 12 или 24 часа. Считанные показания сохраняются в память устройства и передаются при очередном сеансе связи с сетью NB-IoT.

Период передачи данных может равняться 5, 15, 30 минутам, 1, 2, 3, 4, 6, 12 и 24 часам. Передача данных осуществляется в случайный момент времени внутри выбранного периода. При очередном выходе на связь устройство начинает отправлять накопленные пакеты с показаниями, от самого раннего к самому позднему.

В случае отсутствия регистрации в NB-IoT сети или соединения с сервером непереданные пакеты остаются в памяти модема до следующего сеанса связи, при этом устройство продолжает собирать данные согласно периоду сбора данных и записывать их в энергонезависимую память.

Время внутренних часов устанавливается автоматически при подключении к «Vega NB-IoT Configurator» через USB.

ФУНКЦИОНАЛ

Модем Вега NB-12 обеспечивает следующий функционал:

интерфейс «токовая петля» 4-20 мА

- интерфейс 1-Wire для подключения температурных датчиков (до 10 штук)
- аналоговый вход для измерения напряжения от 0 до 3 В
- два входа, работающих в режиме «охранный» для подключения внешних датчиков протечки, охранных датчиков и т. д. с возможностью настройки в качестве импульсных для подсчета импульсов на входе
 - очередь отправки пакетов при невозможности доставки
 - привязка показаний ко времени по внутренним часам (UTC)
- внеочередной выход на связь при выходе тока интерфейса «токовая петля» за установленные в настройках пороги
- внеочередной выход на связь при срабатывании охранных входов или датчика Холла
- измерение внутренней температуры устройства встроенным термодатчиком
 - измерение заряда встроенной батареи в %
 - возможность фильтрации импульсов по длительности

МАРКИРОВКА

Маркировка устройства выполнена в виде наклеиваемой этикетки, которая содержит:

- Наименование изделия;
- IMEI:
- Месяц и год выпуска изделия.

Этикетка располагается в трех местах - на корпусе устройства, в паспорте и на упаковочной коробке.

2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

ХАРАКТЕРИСТИКИ УСТРОЙСТВА

ОСНОВНЫЕ			
Входы аналоговые	1		
Интерфейсы	1-Wire, токовая петля 4-20 мА		
Входы охранные/импульсные	2		
USB-порт	micro-USB, type B		
Диапазон рабочих температур	-40+85 °C		
Встроенный датчик температуры	да		
Датчик Холла	да		
Объем памяти для накопления пакетов	100 000 пакетов		
СОТОВАЯ СВЯЗЬ			
Поддерживаемые стандарты сотовой связи	LTE Cat NB1		
Протокол передачи данных	MQTT		
Время непрерывной работы от одной батареи	1 год при передаче данных раз в сутки		
Тип антенны LTE NB-IoT	внешняя		
ПИТАНИЕ			
Емкость встроенной батареи	6400 мАч (одна или две, в зависимости от условий поставки)		
КОРПУС			
Размеры корпуса	96 х 96 х 50 мм		
Степень защиты корпуса	IP67		
УПАКОВКА			
Габариты	165 х 118 х 57 мм		
Bec	0,350 кг		

7

НАСТРОЙКИ ПО УМОЛЧАНИЮ

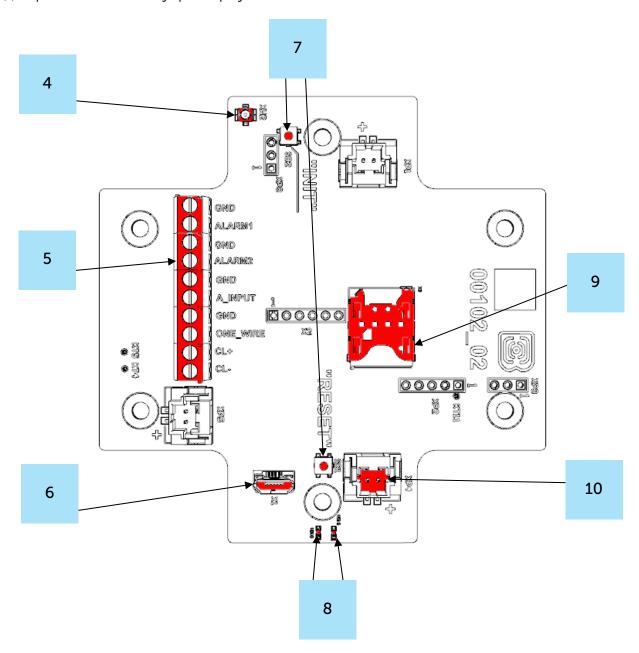
ПАРАМЕТР	ЗНАЧЕНИЕ	
Запрашивать подтверждение	выключено	
Период передачи данных	24 часа	
Период сбора данных	24 часа	
Часовой пояс	UTC +00:00	
Охранные входы работают	по замыканию	
Датчик Холла	включен	
Параметр отправлять статистику сети	выключен	
Настройки фильтрации импульсов	50 мс для импульса и паузы	

Для изменения настроек устройства необходимо подключиться к нему с помощью программы «Vega NB-IoT Configurator». Вы можете скачать её на сайте в разделе «Программное обеспечение», там же находится руководство по работе с конфигуратором. Перейти на страницу программы.

3 РАБОТА С УСТРОЙСТВОМ

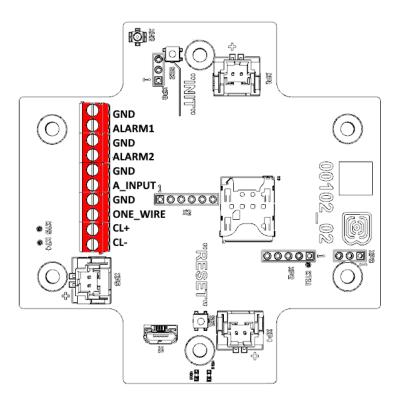
ВНЕШНИЙ ВИД УСТРОЙСТВА

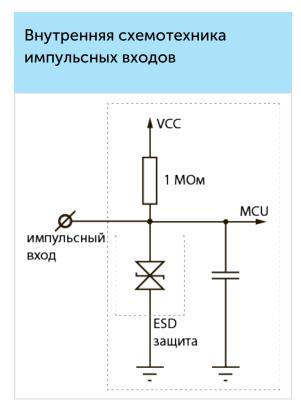
Устройство Вега NB-12 представлено в сером пластиковом корпусе, скрученном на винты. Корпус устройства оснащен гермовводом типоразмера M12. Внутри гермоввода установлен уплотнитель, обеспечивающий соблюдение заявленной степени защиты корпуса устройства.



- 1 винты Ø 4 мм х 27 мм, крестовые **О**
- 2 гермоввод типоразмера М12 для установки кабеля круглого сечения Ø 5-6 мм
- 3 вход внешней антенны

Все элементы управления и индикации, а также контакты для подключения проводов расположены внутри корпуса на плате.




- 4 разъем для подключения внешней антенны
- 5 контактные клеммы
- 6 USB-порт
- 7 кнопки управления
- 8 светодиодные индикаторы
- 9 SIM-держатель
- 10 разъем для подключения батареи

ОПИСАНИЕ КОНТАКТОВ

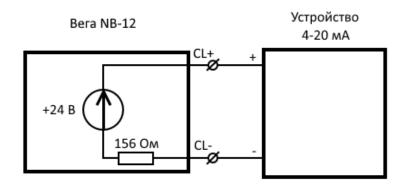
Описание назначения контактов приведено в таблице ниже. При подключении радиомодема к внешним устройствам с импульсными выходами следует учитывать внутреннюю схемотехнику его импульсных входов.

Контакт	Обозначение на плате	Описание
1	GND	Земля
2	ALARM1	Охранный/импульсный вход 1
3	GND	Земля
4	ALARM2	Охранный/импульсный вход 2
5	GND	Земля
6	A_INPUT	Аналоговый вход
7	GND	Земля
8	ONE_WIRE	Цифровой вход 1-Wire
9	CL+	4-20 mA «+»
10	CL-	4-20 mA «-»

На плате расположены два охранных входа, которые позволяют подключать цепи со следующими типами замыкающих контактов:

геркон;

- механическая кнопка;
- «открытый коллектор».


Устройство следит за изменением состояния на охранных входах и в случае срабатывания охранного входа активируется и отправляет в сеть сообщение с сигналом тревоги. Механизм срабатывания настраивается через программу «Vega NB-IoT Configurator».

Охранные входы могут быть настроены в качестве импульсных.

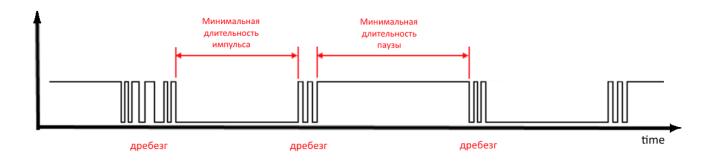
Оборудование с импульсным выходом типа NAMUR не поддерживается

Для подключения внешнего датчика с интерфейсом 4-20 мА используются контакты CL+ и CL-. Схема подключения внешнего датчика приведена на рисунке ниже:

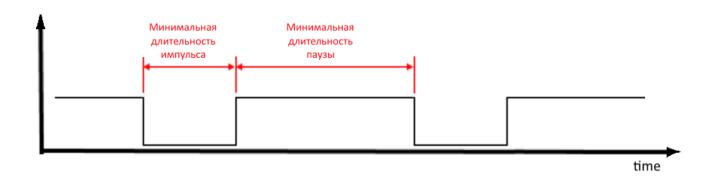
НАСТРОЙКА ИМПУЛЬСНЫХ ВХОДОВ

При подключении к приборам учета с импульсным выходом необходимо учитывать особенности импульса конкретного типа прибора учета: дребезг, минимальная длительность импульса и паузы. Для этого необходимо снять характеристики импульса осциллографом или получить информацию от производителя прибора учета.

В модеме реализован специальный программный фильтр импульсов. Фильтр представлен двумя настройками для каждого импульсного входа (см. раздел 4, вкладка «Настройки»). Рассмотрим особенности настроек фильтрации для разных импульсных выходов.

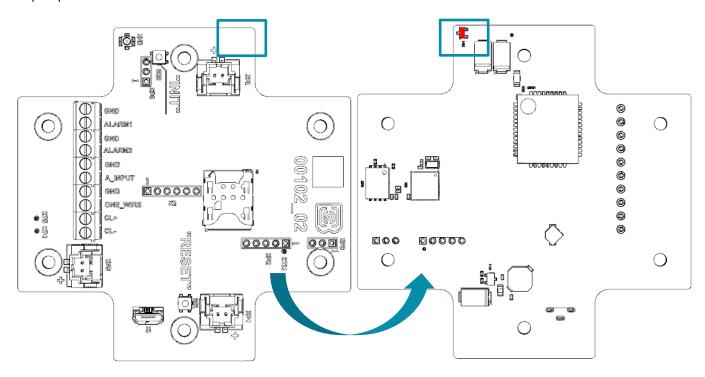

1) Механический импульсный выход

Обычно механический импульсный выход в приборах учета реализован на герконе, но это может быть и кнопка или другая механика. Главная проблема таких выходов — это дребезг контактов. В момент спада и фронта возникает множество дополнительных импульсов, которые не нужно учитывать в подсчете. Кроме того, длительность импульса плавает и зависит от текущего расхода прибора учета. Для

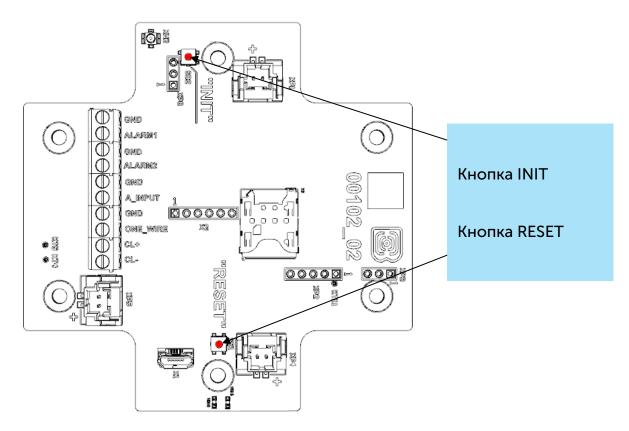

корректного подсчета необходимо определить минимальную длительность полезного импульса и минимальную паузу между полезными импульсами (все что меньше – дребезг). Полученные значения необходимо задать в настройках модема.

Минимальная длительность полезного импульса — это длительность импульса, которую выдает прибор учета на максимальном расходе (максимальный расход указан в паспорте прибора учета). Эта длительность не включает время на дребезг. Минимальную длительность паузы можно задать равной минимальной длительности импульса или больше, если необходимо. Обычно пауза между импульсами на порядок выше.

2) Электронный импульсный выход

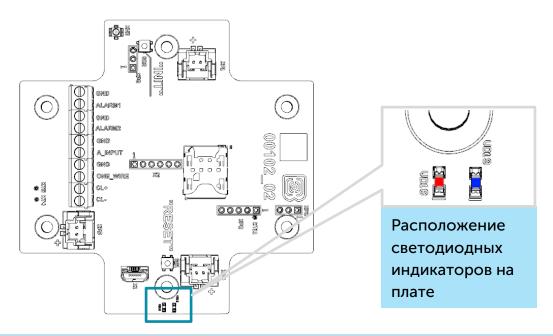

У электронного импульсного выхода отсутствует дребезг (выход типа открытый коллектор). Такой выход обычно имеет фиксированную длительность импульса. Чтобы модем зафиксировал импульс необходимо задать в настройках минимальную длительность импульса меньше, чем фактическая длительность импульса, выдаваемая прибором учета.

ДАТЧИК ХОЛЛА


Устройство оснащено датчиком Холла, который расположен на краю платы с обратной стороны. При поднесении магнита датчик срабатывает и устройство может сформировать сообщение с флагом тревоги, которое будет немедленно отправлено на сервер.

кнопки

На плате расположены две кнопки, с помощью которых можно управлять устройством. Назначение кнопок описано в таблице ниже.


RESET		
Кратковременное нажатие	Аппаратная перезагрузка устройства	
INIT		
Нажатие в течение 1 секунды	Регистрация в сети	
Нажатие в течение 2 секунд	Отправка данных	
Нажатие в течение 3 секунд	Выключение LTE-модема	
Нажатие в течение 4 секунд	Сформировать пакет в черный ящик	

При нажатии на кнопку красный светодиод начинает вспыхивать раз в секунду, что поможет сориентироваться с продолжительностью нажатия. Нажатие в течение 1 секунды соответствует одной вспышке светодиода, нажатие в течение 2 секунд – двум и так далее.

ИНДИКАЦИЯ УСТРОЙСТВА

Устройство имеет один светодиодный индикатор красного цвета и один синего, расположенные на плате. Синий индикатор VD19 показывает состояние LTE-модема, а красный VD18 - состояние устройства.

LTE-модем				
	Короткая вспышка раз в 3 секунды			
	Короткая вспышка раз в секунду Устройство успешно зарегистрировалось и находится сети			
	Две короткие вспышки устройство производит передачу раз в секунду данных в сеть			
	Не горит LTE-модем выключен			
Устройство				
шшш	Короткая вспышка раз в секунду	Батарея заряжена менее чем на 5%		
	Короткая вспышка раз в 5 секунд	Устройство в режиме «Рабочий»		
	Не горит Устройство в режиме «Сон» или выключено			

РЕКОМЕНДАЦИИ ПО МОНТАЖУ

Для обеспечения правильного функционирования установка и настройка счетчика должны осуществляться квалифицированными специалистами.

При подключении импульсного выхода прибора учета к счетному входу модема рекомендуется использовать провода с экранирующей оплеткой, и производить установку прибора учета с модемом вдали от источников радиопомех. Рекомендуется использовать двухжильный провод с экраном. Экран подключается на стороне счетчика импульсов к его земле.

1 жила – сигнал с импульсного выхода подключается к клемме COUNT

2 жила – земля, подключается к клемме GND

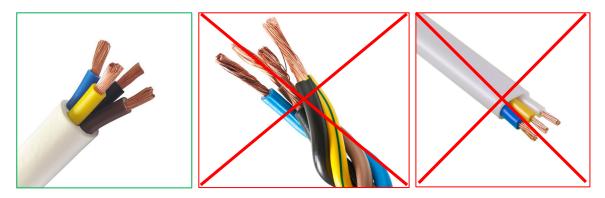
Экран – подключается к клемме GND

Перед началом монтажных работ необходимо убедиться, что на оборудовании установлена последняя версия прошивки

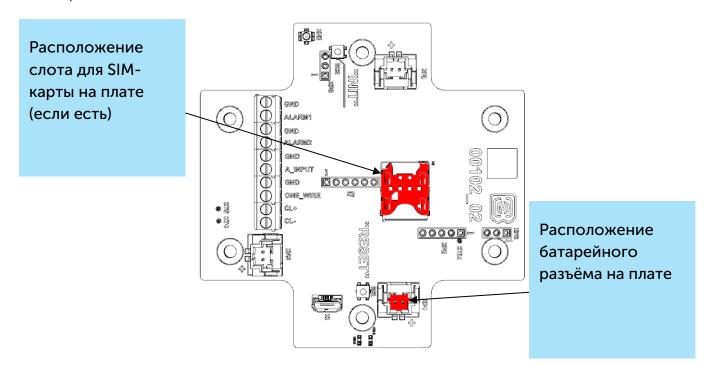
Для осуществления монтажа понадобится:

- SIM-карта;
- 0

- 0
- нож для зачистки провода;
- ноутбук.


Пошаговый монтаж выглядит следующим образом:

- 1. Установка SIM-карты в держатель;
- 2. Настройка устройства через программу «Vega NB-IoT Configurator» как правило, первые два пункта выполняются в офисе.
- 3. Обесточивание подключаемого оборудования, приборов учета и пр.
- 4. Размещение проводов в гермовводе. Необходимо помнить, что провода должны быть объединены в единый кабель круглого сечения диаметром 5-6 мм



Внутри гермоввода установлен уплотнитель, обеспечивающий соблюдение заявленной степени защиты корпуса устройства. При удалении уплотнителя, а также при установке кабеля другого диаметра или сечения возможно ухудшение характеристик устройства вплоть до выхода из строя вследствие попадания влаги внутрь корпуса

- 5. Подключение всех необходимых проводов в контактные клеммы.
- 6. Подключение батареи питания в разъем. После подключения батареи к разъему на плате устройство загружается и уходит в сон до выхода на связь по расписанию.

- 7. Для проверки передачи данных следует нажать на кнопку INIT в течение 2 секунд.
- 8. Перед сборкой устройства можно сбросить накопленные при тестировании и подключении импульсы через программу «Vega NB-IoT Configurator» при необходимости.
- 9. Сборка устройства.

4 ПРОТОКОЛ ОБМЕНА

Передача данных осуществляется по MQTT протоколу. Необходимо прописать в настройках устройства адрес и порт сервера, на который будут отправлять данные, эти настройки задаются в конфигураторе. В качестве сервера (приемной стороны) должен выступать MQTT брокер. Необходимо прописать в настройках устройства адрес и порт брокера. Кроме того, необходимо прописать имя топика куда осуществляется публикация данных, и, имя клиента — имя, под которым устройство будет публиковать данные. Эти настройки задаются в конфигураторе в разделе «Настройки MQTT через LTE». Для того, чтобы увидеть отправленные устройством данные, необходимо развернуть на каком-либо персональном компьютере MQTT брокер и подписаться каким-либо приложением на MQTT брокера.

Устройство NB-12 отправляет сообщение на сервер в текстовом виде, в формате JSON, пример приведен ниже:

```
"Message": {
 "dev": "VEGA NB-12 1.2b",
 "IMEI": "867723030031164",
 "IMSI": "250023039331786",
 "ICCID": "897010230393317862",
 "num": 4,
 "UTC": 1638768629
},
"CellStatus": {
 "SQ": 25,
 "EARFCN": 1865.
 "PCID": 292,
 "RSRP": -697,
 "RSRQ": -108,
 "RSSI": -638,
 "SNR": 184
},
"Telemetry": {
 "reason": "time".
 "UTC": 1638768606,
 "bat": 99,
 "temp": 27,
 "ADC1": 1609,
 "current": 26.28,
 "bat_drop": 3.19,
 "pulse1": 0,
 "pulse2": 0,
 "s_alarm1": 1,
 "s alarm2": 1.
```



```
"s_magnet": 0,
 "s_curovr": 1,
 "s_bde": 0,
 "onewire": {
  "1": {
   "t": 25.1,
   "s": 0
  },
  "2": {
   "t": 24.5,
   "s": 0
  },
  "3": {
   "t": 24.6,
   "s": 1
  },
  "4": {
   "t": 24.5,
   "s": 0
  },
  "5": {
   "t": -24.3,
   "s": 0
  },
  "6": {
   "t": 25.3,
   "s": 0
  },
  "7": {
   "t": 24.3,
   "s": 0
  },
  "8": {
   "t": 24.3,
   "s": 1
  },
  "9": {
   "t": -24.3,
   "s": 1
  },
  "10": {
   "t": 24.3,
   "s": 0
  }
 }
}
```


Расшифровка полей сообщения:

Message – раздел содержит информацию о текущем сообщении.

dev – название и версия прошивки устройства

IMEI – идентификатор LTE-модема

IMSI, ICCID – идентификаторы SIM-карты (SIM-чипа)

num – номер сообщения

UTC – дата и время отправки сообщения в формате UTC по Гринвичу

CellStatus – раздел содержит информацию о состоянии сети

SQ – качество сигнала от базовой станции

EARFCN – номер радиочастотного канала (абсолютный)

PCID – физический адрес сети

RSRP – мощность входящего сигнала

RSRQ – качество входящего сигнала

RSSI – индикатор силы входящего сигнала

SNR – отношение сигнал/шум

Telemetry – раздел содержит собранные данные (данные одной записи устройства)

reason – причина формирования среза данных*

UTC – дата и время формирования среза данных в формате UTC по Гринвичу

bat – заряд батареи в процентах

temp – температура контроллера устройства

ADC1 – напряжения на входе A_INPUT

current – измеренный ток интерфейса токовой петли

bat_drop – значение напряжения элемента питания под нагрузкой

pulse1 – количество импульсов на импульсном входе 1

pulse2 – количество импульсов на импульсном входе 2

 s_alarm1 — состояние входа ALARM1 на момент формирования среза данных ("0" - на входе логический ноль, "1" - на входе логическая единица)

s_alarm2 – состояние входа ALARM2 на момент формирования среза данных ("0" - на входе логический ноль, "1" - на входе логическая единица)

 s_magnet — наличие внешнего магнитного поля на момент формирования среза данных ("0" - отсутствует, "1" - присутствует)

s_curovr – флаг превышения пределов тока интерфейса токовой петли, заданных в настройках ("0" - лимит не превышен, "1" - лимит превышен)

s_bde - флаг наличия критической просадки напряжения батареи под нагрузкой

onewire – значения температур датчиков на шине 1-Wire (первое поле "1", "2" и т. д. - номер датчика по порядку, второе поле "t" - значение температуры

датчика, третье поле "s" - флаг превышения порогов ("0" - нет превышения, "1" - пороги превышены))

*Возможные значения для поля **Reason** (Причина формирования пакета):

time - пакет сформирован по времени (период сбора данных задается в конфигураторе для устройства)

alarm1 - пакет сформирован по тревоге на входе "ALARM1" (по этому событию инициируется сеанс связи)

alarm2 пакет сформирован по тревоге на входе "ALARM2" (по этому событию инициируется сеанс связи)

cnfg - пакет сформирован принудительно по команде с конфигуратора

hall sensor - пакет сформирован по датчику Холла (по этому событию инициируется сеанс связи)

button - пакет сформирован по нажатию кнопки (по этому событию инициируется сеанс связи)

5 ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ

Модемы Вега NB-12 должны храниться в заводской упаковке в отапливаемых помещениях при температуре от +5 °C до +40 °C и относительной влажности не более 85%.

Транспортирование модемов допускается в крытых грузовых отсеках всех типов на любые расстояния при температуре от -40 °C до +85 °C.

6 КОМПЛЕКТ ПОСТАВКИ

Модем поставляется в следующей комплектации:

Модем Вега NB-12 – 1 шт.

Антенна – 1 шт.

Элемент питания 6400 мАч – 1...2 шт.1

Паспорт – 1 шт.

. .

¹ Количество зависит от условий поставки

7 ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

Изготовитель гарантирует соответствие изделия действующей технической документации при соблюдении условий хранения, транспортирования и эксплуатации, указанных в «Руководстве по эксплуатации».

Гарантийный срок эксплуатации – 36 месяцев. Гарантия не распространяется на элементы питания.

Гарантийный срок эксплуатации исчисляется со дня отметки о продаже в паспорте изделия, а при отсутствии такой отметки с даты выпуска. В течение гарантийного срока изготовитель обязан предоставить услуги по ремонту или заменить вышедшее из строя устройство или его составные части.

Изготовитель не несёт гарантийных обязательств при выходе изделия из строя, если:

- изделие не имеет паспорта;
- в паспорте не проставлен штамп ОТК и/или отсутствует наклейка с информацией об устройстве;
- изделие подвергалось вмешательствам в конструкцию и/или программное обеспечение, не предусмотренным эксплуатационной документацией;
- изделие имеет механические, электрические и/или иные повреждения и дефекты, возникшие при нарушении условий транспортирования, хранения и эксплуатации;
- изделие имеет следы ремонта вне сервисного центра предприятияизготовителя;
- компоненты изделия имеют внутренние повреждения, вызванные попаданием внутрь посторонних предметов/жидкостей и/или стихийными бедствиями (наводнение, пожар и т. п.).

Средний срок службы изделия – 7 лет.

При возникновении гарантийного случая следует обратиться в сервисный центр по адресу:

630009, г. Новосибирск, ул. Большевистская, 119А

Контактный телефон: +7 (383) 206-41-35

e-mail: remont@vega-absolute.ru

Информация о документе	
Заголовок	NB-IoT модем с интерфейсом 4-20 мА Вега NB-12
Тип документа	Руководство
Код документа	B02-NB12-01
Номер и дата последней ревизии	05 от 21.01.2022

История ревизий

Ревизия	Дата	Имя	Комментарии
01	24.10.2019	KEB	Первый релиз
02	14.07.2020	KEB	Мелкие правки
03	02.03.2021	KEB	Новые разделы « <u>Настройка импульсных входов</u> », « <u>Рекомендации по установке</u> », заменены скриншоты конфигуратора, новая функция фильтрации импульсов, теперь охранные входы могут работать как импульсные, максимальное число батарей - две
04	08.12.2021	XMA	Изменения в протоколе обмена
05	21.01.2022	XMA	Плановая ревизия

vega-absolute.ru

Руководство по эксплуатации © ООО «Вега-Абсолют» 2019-2022